

PUBLIC

Code Assessment

of the YieldNest Protocol

Smart Contracts

April 19, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 System Overview 6

4 Limitations and use of report 12

5 Terminology 13

6 Findings 14

7 Resolved Findings 15

8 Informational 23

9 Notes 25

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear YieldNest team,

Thank you for trusting us to help YieldNest with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of YieldNest Protocol according
to Scope to support you in forming an opinion on their security risks.

YieldNest implements a liquidity pooling system built on top of EigenLayer, where users can deposit ETH
and LSD tokens and earn yield.

The audit found multiple severe issues (for a detailed description see the Resolved Findings section). All
severe issues have been fixed accordingly. In summary, we find that the codebase now provides a good
level of security.

Yet, the types of issues identified indicated that the code had an insufficient diligent internal review
process and meaningful testing. E.g., the critical issues should have been caught as these issues are
well-known in vaults. We highlight this to make YieldNest aware that in the event of contract updates, a
thorough review and testing process is essential to ensure the security of the codebase. For the current
version of the code, we are not aware of any further severe issues, but it is important to note that security
audits are time-boxed and cannot uncover all vulnerabilities. They complement but don't replace other
vital measures to secure a project. These measures include, but are not limited to, further unit and
integration testing, fuzzing, and a careful roll-out in case significant funds are expected to be held by the
new code base.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 4

• Code Corrected 4

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 8

• Code Corrected 8

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the YieldNest Protocol repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V
Date Commit Hash Note

1
06 Mar
2024

3061501d3e028ae5274ddeb928fedd02d8135
b3a

Initial Version

2
27 Mar
2024

35ab00a645202c8952e32740b90dbcaa57a6a
f09

Version with fixes

3
28 Mar
2024

ced5c5ff841ecc3eed8896485c5be133e67305
92

Second version with INFO fixes

4
08 Apr
2024

4c38ab84df14885fb31a73bf21c51286c895eac
3

Third fixes round

For the solidity smart contracts, the compiler version 0.8.24 was chosen.

The following files are in the scope of the review:

LSDStakingNode.sol
PlaceholderContract.sol
RewardsDistributor.sol
RewardsReceiver.sol
StakingNode.sol
StakingNodesManager.sol
YieldNestOracle.sol
ynBase.sol
ynETH.sol
ynLSD.sol
interfaces:
 IEigenLayerBeaconOracle.sol
 ILSDStakingNode.sol
 IOracle.sol
 IRewardsDistributor.sol
 IRewardsReceiver.sol
 IStakingNode.sol
 IStakingNodesManager.sol
 IynETH.sol
 IynLSD.sol
external:
 etherfi:
 DepositRootGenerator.sol

Version 2In , external/etherfi/DepositRootGenerator.sol was moved to
external/ethereum/DepositRootGenerator.sol.

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Version 4In , interfaces/IEigenLayerBeaconOracle.sol and interfaces/IOracle.sol were
removed from the codebase.

2.1.1 Excluded from scope
Any contracts that are not explicitly listed above are out of the scope of this review. Third-party contracts
and libraries are out of the scope of this review.

3 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

YieldNest offers a liquidity pooling system built on top of EigenLayer, where users can deposit ETH and
LSD tokens and earn yield. It is implemented with two vaults, one for native staking and one for liquid
staking, where the delegation and rewards management is managed by YieldNest. It is important to note
that the current implementation integrates with EigenLayer v0.1.0, and thus does not implement
withdrawals.

Unless explicitly specified, all the contracts are deployed behind a transparent upgradeable proxy.

3.1 Native (re)staking

3.1.1 ynETH
This is the main entry point for users with ETH, they can deposit ETH in ynETH and receive shares of the
vault. By default, the shares are not transferable, this can be changed by the PAUSER role. The deposited
ETH can be pulled by the StakingNodesManager to activate new validators on the beacon chain. The
shares are expected to increase in value as consensus and execution layers rewards are distributed.

3.1.2 StakingNode
The StakingNodes are deployed behind a beacon proxy. Each StakingNode mirrors an EigenPod,
from which it is the owner. The admin of a StakingNode is the address bearing the
STAKING_NODES_ADMIN role in the StakingNodesManager contract. The admin can trigger the
following actions:

• verifyWithdrawalCredentials(): triggers the EigenPod to verify the withdrawal credentials
and activate some validators on EigenLayer. This will currently revert, as EigenLayer paused the
functionality.

• delegate(): Delegates the staked amount to some operator. This will currently revert, as
EigenLayer paused the functionality.

• undelegate(): undelegates the staked amount. This will currently revert, as EigenLayer paused
the functionality.

• withdrawBeforeRestaking(): calls withdrawBeforeRestaking on the EigenPod, this can
be done only before any restaking is done. This will start the delayed withdrawal process of the
balance of the EigenPod. This will currently revert, as EigenLayer paused the functionality.

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• claimDelayedWithdrawals(): claims up to maxNumWithdrawals for the EigenPod's owner
(StakingNode), if any full withdrawal was to be claimed, the amount should be reflected in
withdrawnValidatorPrincipal. The total claimed amount is then sent to the
StakingNodesManager, where the principal is sent directly to ynETH, and the rewards are sent to
the consensusLayerReceiver to be distributed.

3.1.3 StakingNodesManager
The StakingNodesManager is responsible for deploying new StakingNodes and registering new
validators. Before any action, the STAKING_ADMIN must deploy the upgradeable beacon and set the
implementation for the StakingNodes with registerStakingNodeImplementationContract.
The STAKING_ADMIN can update implementation with upgradeStakingNodeImplementation.
Once this is done, the STAKING_NODE_CREATOR can create StakingNodes with
createStakingNode, up to maxNodeCount. Each of them has an id and creates their EigenPod
during the creation process.

When at least one StakingNode has been deployed, the VALIDATOR_MANAGER can start registering
validators with registerValidators. The function first checks that the current deposit root matches
some expected root passed as arguments, then it will withdraw #validators * 32 ETH from ynETH
and makes the deposit in the beacon chain deposit contract for each of the validators, with their
withdrawal credentials pointing to one of the EigenPods managed by one of the StakingNodes.

3.1.4 Rewards distribution
The distribution of the consensus and execution layers rewards are managed by the
RewardsDistributor. The execution layer rewards are first sent to the executionLayerReceiver
by the validators, and the consensus layer rewards are sent to the consensusLayerReceiver by the
StakingNodesManager through delayed withdrawal and
StakingNode.claimDelayedWithdrawals() path.

Anyone can call processRewards() on the RewardsDistributor, the function will pull the ETH
balances of the two RewardsReceiver mentioned above, take a fee on the rewards (10% by default),
and send the remaining amount to the ynETH contract. For this, RewardsDistributor is assumed to
have the WITHDRAWER role in both of the RewardsReceivers.

3.2 Liquid (re)staking

3.2.1 ynLSD
This is the main entry point for users with liquid staking derivatives (LSD), they can deposit their tokens in
ynLSD and receive shares of the vault. By default, the shares are not transferable, this can be changed
by the PAUSER role. The deposited tokens can be pulled by the StakingNodesManager to activate new
validators on the beacon chain. The shares are expected to gain in value as consensus and execution
layers rewards are distributed. The tokens that can be deposited are whitelisted and bound to an
EigenLayer strategy.

The ynLSD contract is also responsible for deploying a new LSDStakingNode that will deposit the
tokens into EigenLayer. But first, the STAKING_ADMIN must deploy the upgradeable beacon and set the
implementation for the LSDStakingNodes with
registerLSDStakingNodeImplementationContract. The STAKING_ADMIN can update
implementation with upgradeLSDStakingNodeImplementation. Once this is done, the
LSD_STAKING_NODE_CREATOR can create some LSDStakingNodes with createLSDStakingNode,
up to maxNodeCount.

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3.2.2 LSDStakingNode
The LSDStakingNodes are deployed behind a beacon proxy. The admin of a StakingNode is the
address bearing the LSD_STAKING_NODES_ADMIN role in the ynLSD contract. The admin can trigger
the following actions:

• depositAssetsToEigenlayer(): pulls from ynLSD and deposits the specified amount of the
specified LSD into its EigenLayer strategy.

• delegate(): delegates the staked amount to some operator. This will currently revert, as
EigenLayer paused the functionality.

• undelegate(): undelegates the staked amount. This will currently revert, as EigenLayer paused
the functionality.

3.3 Trust Model
PROXY_ADMIN_OWNER

The role is assumed to be fully trusted.

Responsible for managing and upgrading all transparent upgradeable proxy contracts. This role can
change the implementation behind a proxy, allowing for contract upgrades while preserving the
contract's address and state.

YieldNest informed us that this will be controlled by a core-team 3/5 multisig.

DEFAULT_ADMIN_ROLE

The role is assumed to be fully trusted.

A general administrative role with broad permissions, including potentially managing other roles,
updating system parameters, or performing critical system functions in the contracts.

• RewardsDistributor.setFeesReceiver

• RewardsDistributor.setFeesBasisPoints

• ynETH.setExchangeAdjustmentRate

YieldNest informed us that this will be controlled by a core-team 3/5 multisig.

STAKING_ADMIN

The role is assumed to be fully trusted.

Responsible for managing staking-related parameters or operations. This address can register and
upgrade the implementation contracts StakingNode``in ``StakingNodesManager and
LSDStakingNode in ynLSD. It's also able to set the maxNodeCount.

Hence, the following functions can be called by the role:

• StakingNodesManager.registerStakingNodeImplementationContract

• StakingNodesManager.upgradeStakingNodeImplementation

• StakingNodesManager.setMaxNodeCount

• ynLSD.registerLSDStakingNodeImplementationContract

• ynLSD.upgradeLSDStakingNodeImplementation

• ynETH.setMaxNodeCount

YieldNest informed us that this will be controlled by a core-team 3/5 multisig.

STAKING_NODES_ADMIN

The role is assumed to be fully trusted.

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

The role is specifically focused on the administration of staking nodes. Manages node-specific
administrative tasks where nodes are the contracts with StakingNode as the implementation
contract. This role is tracked within the StakingNodesManager and acts verified using the
onlyAdmin within StakingNode.

The actions triggered by this role are keeper-style actions meant to handle restaking-related
operations within StakingNode.sol:

• withdrawBeforeRestaking

• claimDelayedWithdrawals

• verifyWithdrawalCredentials

• delegate

• undelegate

YieldNest informed us that this will be controlled by a 2/3 multisig that is controlled by off-chain
backend processes in an automated fashion that decides upon when to skim rewards, process
validator withdrawals or delegate/undelegate to different operators.

LSD_RESTAKING_MANAGER

The role is assumed to be fully trusted.

This role is specifically focused on the administration of LSD staking nodes. Manages node-specific
administrative tasks where nodes are the contracts with implementation LSDStakingNode. This role
is tracked within the ynLSD and acts verified using the onlyLSDRestakingManager within
LSDStakingNode.

The actions triggered by this role are keeper-style actions meant to handle restaking-related
operations within LSDStakingNode:

• LSDStakingNode.depositAssetsToEigenlayer

• LSDStakingNode.Delegate

• LSDStakingNode.Undelegate

This will be controlled by a 2/3 multisig that is controlled by off-chain backend processes in an
automated fashion that decide upon when to batch deposit LSD assets that are deposited into ynLSD
into Eigenlayer, delegate and undelegate.

VALIDATOR_MANAGER_ROLE

The role is assumed to be fully trusted.

Manages validator-specific functions, such as registering or deregistering validators, managing
validator sets, or handling validator performance and slashing conditions.

Currently, only StakingNodesManager.registerValidators can be called by the role.

Additionally, the following information was provided by YieldNest:

There are several modules available to add on to Gnosis that are relevant to the
VALIDATOR_MANAGER role. A time lock delay modifier creates a delay between when a transaction
is approved and when it can be executed. This delay would provide a safety period to enable
transaction rejection and mitigation of potential front-running of root deposits.

Furthermore, transaction role modifiers that restrict the capability of VALIDATOR_MANAGER EOA
signers to only a specific set of transaction parameters would assist with limiting the capability of this
role to a confined set of actions.

YieldNest informed us that this will be controlled by a 2/3 multisig that is controlled by off-chain
backend processes in an automated fashion that uses the figment API and those of other staking
service providers to provision validators on-chain.

PAUSER_ROLE

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

The role is assumed to be fully trusted.

The role has the authority to pause and unpause certain functions within the system. This role is
critical for emergency response or system maintenance, allowing for a halt to operations without
affecting the underlying state.

The following functions can be called by the role:

• ynBase.unpauseTransfers

• ynBase.addToPauseWhitelist

• ynBase.removeFromPauseWhitelist

• ynETH.updateDepositsPaused

YieldNest informed us that this will be controlled by a core dev 2/3 multisig.

LSD_STAKING_NODE_CREATOR_ROLE

The role is assumed to be fully trusted.

Authorized to create new staking nodes within the system
(StakingNodesManager.createStakingNode, ynLSD.createLSDStakingNode).

YieldNest informed us that this role will be controlled by a core dev 2/3 multisig.

ORACLE_MANAGER

The role is assumed to be fully trusted.

Manages oracles or data feeds that provide external information to the system. This role is
crucial for systems that rely on accurate, real-time data for price feeds from outside the chain.

Allows setting asset price feeds by calling setAssetPriceFeed.

YieldNest informed us that this role will be controlled by a core team 3/5 multisig.

WITHDRAWER_ROLE

The role is assumed to be fully trusted.

The role is allowed to move all Ether and tokens out of the RewardsReceiver contract by calling
transferETH and transferERC20.

YieldNest did not specify the role in more detail.

We also assume the following:

• Chainlink price will always be checked to be returned in 18 decimals. Otherwise, the price feed will
not be used.

• ynLSD and ynEth are behind proxy contracts.

• Yieldnest contracts will not be frozen by EigenLayer

• Slashing is expected to be a very rare event and will not have a significant impact on the project's
funds. YieldNest informed us they will create an insurance fund to cover for user's funds in case
slashing happens.

3.4 Changes in V2
• the deposits in ynETH and ynLSD can be paused/unpaused by the PAUSER role

• the flow for withdrawals claims was updated and now relies on arbitrary addresses to claim on
behalf of the StakingNode. The admin of the node is responsible for processing the withdrawals by
calling processWrithdrawals.

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

• During deployment of ynLSD, a special trusted address depositBootstrapper receives the initial
shares. This address is trusted to keep its shares as long as the protocol is running to avoid inflation
attack in the case withdrawals become available and the pool is emptied.

3.5 Changes in V4
• a function to retrieve the assets locked in the LSDSTakingNodes has been added. The function
LSDSTakingNodes.recoverAssets() can only be called by the LSD_RESTAKING_MANAGER
and sends the token balance to ynLSD.

• the function StakingNode.processWithdrawals() has been updated to process only
expectedETHBalance if available. The difference balance - expectedETHBalance will be
processed by another transaction.

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

7 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 4

• Code CorrectedComputation of ynLSD.getTotalAssets() Is Wrong

• Code CorrectedFirst Depositor Gets More Shares

• Code CorrectedWithdrawals That Are Not Self-Claimed Break the Accounting

• Code CorrectedynLSD Is Vulnerable to Donation Attack

Medium -Severity Findings 2

• Code CorrectedIncorrect Balance Transfers With Rebasing Tokens

• Code CorrectedPartial Withdrawals Claims Will Fail

Low -Severity Findings 8

• Code CorrectedProcessing of Withdrawals Can Be DOSed

• Code CorrectedDiscrepancy in the Value Check for maxAge

• Code CorrectedIgnored Return Values

• Code CorrectedInitializer Not Disabled

• Code CorrectedOracle Price Sanity Check

• Code CorrectedRedundant Functionality

• Code CorrectedUninitialized Reentrancy Guard

• Code CorrectedUnused Code

Informational Findings 5

• Code CorrectedRemaining Todos

• Code CorrectedOvercomplicated Expression

• Code CorrectedComplete Events

• Code CorrectedIncorrect Natspec

• Code CorrectedMissing Natspec Param Definition

7.1 Computation of ynLSD.getTotalAssets() Is
Wrong
Correctness High Version 1 Code Corrected

CS-YNPROTO-001

The computation of ynLSD.getTotalAssets() has two issues:

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

1. The index used in the inner loop to get the asset should be j instead of i. The current
implementation will either revert with an out-of-bound exception, or double count some assets, by
adding the balance of token X as what should be the balance of token Y and ignore others.

2. The current implementation of LSDStakingNode does not allow it to use its own token balance, as
it will always pull tokens from ynLSD and deposit that exact same amount to EigenLayer. This
means that outside of a call to depositAssetsToEigenlayer() the tokens in each of the
LSDStakingNodes are locked. If counting them to the totalAssets is correct and intended
should be re-evaluated.

Put together, the two issues result in a wrong price calculation of the ynLSD shares.

Code corrected:

1. The correct index j is now used in the loop.

2. The function LSDStakingNode.recoverAssets() has been added. The function sends the
token balance from an LSDStakingNode to ynLSD, allowing them to be unlocked from the
LSDStakingNodes and counted towards the totalAssets.

7.2 First Depositor Gets More Shares
Correctness High Version 1 Code Corrected

CS-YNPROTO-002

In ynETH and ynLSD, the first depositor sees its shares minted 1:1 to its deposited amount. If
exchangeAdjustmentRate > 0, the following depositors will have their shares minted at a lower
ratio, basically gifting some of their deposited amount to the first depositor.

Please provide a detailed description of why would exchangeAdjustmentRate be needed and what
was the intention.

Code corrected:

The variable exchangeAdjustmentRate has been removed from the codebase.

7.3 Withdrawals That Are Not Self-Claimed Break
the Accounting
Design High Version 1 Code Corrected

CS-YNPROTO-003

EigenLayer allows claiming withdrawals on behalf of arbitrary addresses. The current implementation of
the YieldNest Protocol does not take this into account, and thus any withdrawn amounts that are not
claimed through StakingNode.claimDelayedWithdrawals() are locked in the StakingNode.

The implementation of StakingNode can be updated, but the shares of ynETH would be underpriced
until the accounting is corrected.

Code corrected:

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

The function StakingNode.claimDelayedWithdrawals has been removed from the codebase. A
new function StakingNode.processWithdrawals has been added, this function expects that the
withdrawals are claimed by a third party and will simply send the balance of the StakingNode contract
to the stakingNodesManager for further processing as before. This new function can only be called by
the admin.

7.4 ynLSD Is Vulnerable to Donation Attack
Design High Version 1 Code Corrected

CS-YNPROTO-004

It is possible for the first user of the pool to steal the next deposited amount. The ynLSD reads the
balances of its supported assets to compute totalAssets and the _convertToShares function
does not add an offset. This makes the contract vulnerable to a donation attack, where the first user
mints 1 share and front-runs the second user in their deposit by transferring the deposited amount to
ynLSD in order to force a minting of 0 shares to the second user.

Example:

1. ynLSD is deployed and accepts token T. The oracle is assumed to return the following price:
1 T = 1 ETH.

2. Alice deposits 1 wei of T and receives 1 share for it. Now totalSupply = 1 and
totalAssets = 1.

3. Bob sends a transaction to deposit a big amount X of T.

4. Alice sees the transaction in the mempool and front-runs it with a transfer of amount X. Now
totalSupply = 1 and totalAssets = 1 + X.

5. Bob's transaction gets executed and the number of shares he receives is .

6. Alice has now 1 share valued at 1 + 2 * X, and Bob lost his deposit.

Note that if exchangeAdjustmentRate > 0, this attack would be cheaper to conduct as the
totalSupply() would be considered smaller than what it actually is. Then the amount needed to round
down to zero the shares of the next deposit is also reduced.

Code corrected:

Upon deployment, the code now enforces a bootstrap deposit of 10 units of assets[0] that must be
worth at least 1 ether. The shares of this initial deposit are sent to a trusted address
depositBootstrapper. Moreover, exchangeAdjustmentRate has been removed from the
codebase.

7.5 Incorrect Balance Transfers With Rebasing
Tokens
Correctness Medium Version 1 Code Corrected

CS-YNPROTO-005

Rebasing tokens like stETH might transfer less than expected. This might get problematic when a
contract expects to receive the amount specified in the transfer. E.g., in ynLSD.deposit the
safeTransferFrom might transfer one or two wei less than specified in amount. But before, all
calculations and the share distribution were done on the assumption that amount would be later an asset

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

of the contract. In consequence, this might break the invariant between the amount of shares and assets
such that there are shares but no assets.

Code corrected:

In ynLSD YieldNest accepted the risk. In the case of
LSDStakingNode.depositAssetsToEigenlayer the issue was fixed by querying the pre- and
post-balance of the contract before calling depositIntoStrategy. We rate this issue as fixed but
created a note to document the behavior for ynLSD.

7.6 Partial Withdrawals Claims Will Fail
Design Medium Version 1 Code Corrected

CS-YNPROTO-006

The function StakingNode.claimDelayedWithdrawals allows the caller to specify the
maxNumWithdrawals, but totalClaimable will always be computed as if maxNumWithdrawals
was set to type(uint256).max. If the caller does not want to claim all the claimable withdrawals, the
condition totalClaimable > claimedAmount will be evaluated to true and the function will revert.

Code corrected:

The function StakingNode.claimDelayedWithdrawals has been removed from the codebase. A
new function StakingNode.processWithdrawals has been added, this function expects that the
withdrawals are claimed by a third party and will simply send the balance of the StakingNode contract
to the stakingNodesManager for further processing as before. This new function can only be called by
the admin.

7.7 Processing of Withdrawals Can Be DOSed
Security Low Version 2 Code Corrected

CS-YNPROTO-021

The function StakingNode.processWithdrawals() expects a precise amount of ETH as its
balance, if it differs from this amount the call will revert. The contract assumes it can only receive ETH
from the DelayedWithdrawalRouter, but it is possible to force send ETH to the contract with
selfdestruct.

Code corrected:

The function StakingNode.processWithdrawals() has been updated such that only
expectedETHBalance is processed. The difference between the balance and expectedETHBalance
can be processed in another transaction.

7.8 Discrepancy in the Value Check for maxAge
Design Low Version 1 Code Corrected

CS-YNPROTO-007

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

In YieldNestOracle, the value of maxAge is required to be > 0 in setAssetPriceFeed, but no such
check is done in the constructor.

Code corrected:

The value of maxAge is now checked during construction of YieldNestOracle and redundancies have
been resolved by reusing the code that was present in setAssetPriceFeed.

7.9 Ignored Return Values
Design Low Version 1 Code Corrected

CS-YNPROTO-008

The following calls ignore the returned value:

• LSDStakingNode.depositAssetsToEigenlayer does not check the return value by
asset.approve

• ynLSD.retrieveAsset does not check the return value from IERC20(asset).transfer

Code corrected:

The OpenZeppelin library SafeERC20 is used for ERC20 interactions in
LSDStakingNode.depositAssetsToEigenlayer (forceApprove) and in
ynLSD.retrieveAsset (safeTransfer).

7.10 Initializer Not Disabled
Security Low Version 1 Code Corrected

CS-YNPROTO-009

Proxy implementation contracts inheriting OpenZeppelin's Initializable contract should call
_disableInitializers in their constructor to prevent initialization and re-initialization of the
implementation contract.

Code corrected:

All contracts inheriting OpenZeppelin's Initializable contract now call _disableInitializers in
their constructor.

7.11 Oracle Price Sanity Check
Design Low Version 1 Code Corrected

CS-YNPROTO-010

In YieldNestOracle.getLatestPrice the price returned by the oracle is not further checked if it
might be, e.g., zero.

Code corrected:

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

The function has been updated such that the call reverts if price <= 0.

7.12 Redundant Functionality
Design Low Version 1 Code Corrected

CS-YNPROTO-011

The functions ynBase.pauseWhiteList and ynBase.isAddressWhitelisted have the same
logic.

Code corrected:

The function isAddressWhitelisted was removed.

7.13 Uninitialized Reentrancy Guard
Security Low Version 1 Code Corrected

CS-YNPROTO-012

The StakingNode contract inherits ReentrancyGuardUpgradeable. But does not call
__ReentrancyGuard_init() in initialize.

Code corrected:

The initialize function has been updated to call __ReentrancyGuard_init().

7.14 Unused Code
Design Low Version 1 Code Corrected

CS-YNPROTO-013

Some parts of the codebase are never used. To ease the comprehension of the code, it is good practice
to keep it in its minimal form. Here is a non-exhaustive list of unused code:

1. the errors MinimumStakeBoundNotSatisfied, StakeBelowMinimumynETHAmount,
DepositAllocationUnbalanced in StakingNodesManager

2. the errors MinimumStakeBoundNotSatisfied, StakeBelowMinimumynETHAmount in ynETH

3. the errors error InvalidConfiguration, error NotOracle and error Paused in
RewardsDistributor

4. the errors StrategyIndexMismatch and WithdrawalAmountTooLow in StakingNode

5. the storage variable pendingWithdrawnValidatorPrincipal and the constant
GWEI_TO_WEI in StakingNode

6. the storage variable allocatedETHForDeposits in ynETH

7. the storage variables maxBatchDepositSize, stakeAmount in StakingNodesManager

8. the constant BASIS_POINTS_DENOMINATOR in ynBase

9. the event FeeReceiverSet in the interface definition of RewardsDistributorEvents in
RewardsDistributor.sol

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

10. the events WithdrawalStarted and RewardsProcessed in the interface definition of
StakingNodeEvents in StakingNode.sol

11. the interfaces IOracle and IEigenLayerBeaconOracle

Version 2 :

1. the error ValueOutOfBounds in ynETH

Code corrected:

All the listed issues have been resolved.

7.15 Complete Events
Informational Version 1 Code Corrected

CS-YNPROTO-014

We assume YieldNest checked when to emit events. Without clear specification on when events shall be
emitted, we cannot verify if the events are emitted correctly. We encourage YieldNest to review if all
relevant state changes emit events as intended (e.g., RewardsDistributor.processRewards,
ynBase._updatePauseWhitelist).

The above also applies to indexing events. Most events index relevant fields but some don't. E.g.,
RewardsDistributorEvents.FeeReceiverSet.

Core corrected:

Events have been added throughout the codebase where important state changes are made.

7.16 Incorrect Natspec
Informational Version 1 Code Corrected

CS-YNPROTO-017

The natspec of StakingNodesManager.validateDepositDataAllocation claims the function
does:

/**
* @notice Validates the allocation of deposit data across nodes to ensure the distribution does not increase the disparity in balances.
* @dev This function checks if the proposed allocation of deposits (represented by `_depositData`) across the nodes would lead to a more
* equitable distribution of validator stakes. It calculates the current and new average balances of nodes, and ensures that for each node,
* the absolute difference between its balance and the average balance does not increase as a result of the new deposits
* @param newValidators An array of `ValidatorData` structures representing the validator stakes to be allocated across the nodes.
*/

The implementation deviates from the description. The only check done is nodeId >= nodes.length
for each node in newValidators.

Code corrected:

The function name and natspec have been changed to reflect the implementation.

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

7.17 Missing Natspec Param Definition
Informational Version 1 Code Corrected

CS-YNPROTO-018

The natspec definition for the second parameter withdrawnValidatorPrincipal of the function
StakingNode.claimDelayedWithdrawals is missing.

Code corrected:

The function StakingNode.claimDelayedWithdrawals was removed from the codebase.

7.18 Overcomplicated Expression
Informational Version 1 Code Corrected

CS-YNPROTO-019

Expressions like assetDecimals < 18 || assetDecimals > 18 in ynLSD.convertToETH can
be replaced by simpler variants, they add unnecessary complexity and should be avoided.

Code corrected:

The expression has been simplified to assetDecimals != 18.

7.19 Remaining Todos
Informational Version 1 Code Corrected

CS-YNPROTO-020

In StakingNodesManager.isStakingNodesAdmin we found a left over to do comment
// TODO: define specific admin.

Code corrected:

The todo was removed from the code.

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

8 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

8.1 Gas Optimizations
Informational Version 1 Code Partially Corrected

CS-YNPROTO-015

We highlight gas inefficiencies when we see them but highly encourage YieldNest to check for more
inefficiencies as we did find quite a lot and expect more to be present. The following list are examples we
found:

1. In the function LSDStakingNode.depositAssetsToEigenlayer, asset can be used in place
of assets[i].

2. In the function LSDStakingNode.depositAssetsToEigenlayer, the check
address(strategy) == address(0) is redundant with the one implemented in
ynLSD.retrieveAsset().

3. The substration in the function ynETH.withdrawETH() can be unchecked.

4. In the function ynETH.depositETH(), msg.value can be used in place of assets, as its gas
cost is only 2.

5. In the functions ynLSD.initializeLSDStakingNode() and
StakingNodesManager.initializeStakingNode(), a call is made to
node.getInitializedVersion() but the returned value is never used.

6. When the functions ynLSD.initializeLSDStakingNode() and
StakingNodesManager.initializeStakingNode() are used, nodes.length is read twice,
passing the nodeId as a function argument can save an SLOAD.

7. In the function StakingNodesManager.processWithdrawnETH(), the call
ynETH.processWithdrawnETH() can be done only if
withdrawnValidatorPrincipal > 0, if partial withdrawals are expected to be more common
than full withdrawals.

8. In the function RewardsReceiver.initialize(), the admin of the WITHDRAWER is explicitly
set to be DEFAULT_ADMIN, but this is the case by default.

9. In ynLSD.createLSDStakingNode the state variable nodes.length is read multiple times
including in initializeLSDStakingNode where it could be passed as argument.

10. StakingNodesManager.validateDepositDataAllocation the state variable
nodes.length is read multiple times and could be cached.

11. When looping over assets, the asset array's length should be cached. When using the storage
variable as bounded in i < assets.length it will be read multiple times.

Version 3

1. In ynLSD.getTotalAssets() the state variable nodes.length is read multiple times in the
loop and could be cached to save SLOAD.

Code partially corrected:

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

1. Fixed.

2. Fixed.

3. No change.

4. The cached value in now used everywhere. It is now consistent within the function, but not
gas-optimal.

5. Fixed. The value is used in the emitted event.

6. Fixed.

7. No change.

8. Fixed.

9. Fixed.

10. Fixed. Function name updated to StakingNodesManager.validateNodes.

11. Fixed.

Version 3

1. Fixed.

8.2 Incorrect Comments
Informational Version 1 Code Partially Corrected

CS-YNPROTO-016

1. In ynLSD._convertToShares the comment was copied from the same function that exists in
ynETH and, hence, mentions deltaynETH instead of deltaynLSD.

2. In ynLSD the explanation of retrieveAsset is incorrect. It states
Retrieves a specified amount of an asset from the staking node. But actually,
transfers the asset to the staking node (as @dev correctly describes).

Code partially corrected:

1. The comment has been corrected.

2. No change

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

9 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

9.1 Slightly Deviating Balance to Share in Case of
Rebasing Tokens
Note Version 1

Rebasing tokens like stETH might transfer less than expected. This might get problematic when a
contract expects to receive the amount specified in the transfer. E.g., in ynLSD.deposit the
safeTransferFrom might transfer one or two wei less than specified in amount. But before, all
calculations and the share distribution were done on the assumptions that amount would be later an
asset of the contract. In consequence, this might break the invariant between the amount of shares and
assets such that there are shares but no assets.

The issue was rated more severe in Incorrect balance transfers with rebasing tokens and fixed for
LSDStakingNode.depositAssetsToEigenlayer. However, the behavior is still present in
ynLSD.deposit but not considered severe enough to cause further issues.

YieldNest - YieldNest Protocol - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Native (re)staking
	3.1.1 ynETH
	3.1.2 StakingNode
	3.1.3 StakingNodesManager
	3.1.4 Rewards distribution

	3.2 Liquid (re)staking
	3.2.1 ynLSD
	3.2.2 LSDStakingNode

	3.3 Trust Model
	3.4 Changes in V2
	3.5 Changes in V4

	4 Limitations and use of report
	5 Terminology
	6 Findings
	7 Resolved Findings
	7.1 Computation of ynLSD.getTotalAssets() Is Wrong
	7.2 First Depositor Gets More Shares
	7.3 Withdrawals That Are Not Self-Claimed Break the Accounting
	7.4 ynLSD Is Vulnerable to Donation Attack
	7.5 Incorrect Balance Transfers With Rebasing Tokens
	7.6 Partial Withdrawals Claims Will Fail
	7.7 Processing of Withdrawals Can Be DOSed
	7.8 Discrepancy in the Value Check for maxAge
	7.9 Ignored Return Values
	7.10 Initializer Not Disabled
	7.11 Oracle Price Sanity Check
	7.12 Redundant Functionality
	7.13 Uninitialized Reentrancy Guard
	7.14 Unused Code
	7.15 Complete Events
	7.16 Incorrect Natspec
	7.17 Missing Natspec Param Definition
	7.18 Overcomplicated Expression
	7.19 Remaining Todos

	8 Informational
	8.1 Gas Optimizations
	8.2 Incorrect Comments

	9 Notes
	9.1 Slightly Deviating Balance to Share in Case of Rebasing Tokens

