¢ YieldNest

SMART CONTRACTS REVIEW

I/} zokyo

May 7th 2024 | v. 1.0

Security Audit Score

AR

Zokyo Security has concluded that

these smart contracts passed a
security audit.

ZOKYO AUDIT SCORING YIELDNEST

1. Severity of Issues:

- Critical: Direct, immediate risks to funds or the integrity of the contract. Typically, these
would have a very high weight.

- High: Important issues that can compromise the contract in certain scenarios.

- Medium: Issues that might not pose immediate threats but represent significant
deviations from best practices.

- Low: Smaller issues that might not pose security risks but are still noteworthy.

- Informational: Generally, observations or suggestions that don't point to vulnerabilities
but can be improvements or best practices.
2. Test Coverage: The percentage of the codebase that's covered by tests. High test
coverage often suggests thorough testing practices and can increase the score.
3. Code Quiality: This is more subjective, but contracts that follow best practices, are well-
commented, and show good organization might receive higher scores.
4. Documentation: Comprehensive and clear documentation might improve the score, as it
shows thoroughness.
5. Consistency: Consistency in coding patterns, naming, etc., can also factor into the score.
6. Response to Identified Issues: Some audits might consider how quickly and effectively
the team responds to identified issues.

YIELDNEST SMART CONTRACTS REVIEW

I/} zokyo

1

HYPOTHETICAL SCORING CALCULATION:

Let's assume each issue has a weight:
- Critical: -30 points

- High: -20 points

- Medium: -10 points

- Low: -5 points

- Informational: -1 point

Starting with a perfect score of 100:

- @ Critical issues: @ points deducted

- 1 High issue: 1 resolved = @ points deducted

- 2 Medium issues: 1 resolved and 1 acknowledged = - 4 points deducted
- @ Low issues: @ points deducted

- 2 Informational issues: 2 resolved = @ points deducted

Thus, 100 - 4 = 96

YIELDNEST SMART CONTRACTS REVIEW

I/} zokyo

2

TECHNICAL SUMMARY

This document outlines the overall security of the YieldNest smart contract/s evaluated by
the Zokyo Security team.

The scope of this audit was to analyze and document the YieldNest smart contract/s
codebase for quality, security, and correctness.

Contract Status

There were 0 critical issues found during the review. (See Complete Analysis)

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract/s but rather limited to an assessment of the logic and implementation. In order
to ensure a secure contract that can withstand the Ethereum network’s fast-paced and
rapidly changing environment, we recommend that the YieldNest team put in place a bug
bounty program to encourage further active analysis of the smart contract/s.

YIELDNEST SMART CONTRACTS REVIEW

I/} zokyo

3

Table of Contents

Auditing Strategy and Techniques Applied
Executive Summary
Structure and Organization of the Document

Complete Analysis

YIELDNEST SMART CONTRACTS REVIEW

I/} zokyo

4

AUDITING STRATEGY AND TECHNIQUES APPLIED

The source code of the smart contract was taken from the YieldNest repository:
Repo: https://github.com/yieldnest/yieldnest-protocol/pull/95/files

Last commit - be177b7c6200e8e4737ebebd246982e20dd60547

Within the scope of this audit, the team of auditors reviewed the following contract(s):

for ynETH.sol:

= RewardDistributor.sol

= RewardsReceiver.sol

= StakingNode.sol

= StakingNodesManager.sol
For ynLSD:

= YieldNestOracle.sol

= LSDStakingNode.sol

During the audit, Zokyo Security ensured that the contract:

= Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

= Distributes tokens in a manner that matches calculations;

= Follows best practices, efficiently using resources without unnecessary waste;
= Uses methods safe from reentrance attacks;

= |s not affected by the most recent vulnerabilities;

= Meets best practices in code readability, etc.

YIELDNEST SMART CONTRACTS REVIEW

I/} zokyo

5

https://github.com/yieldnest/yieldnest-protocol/pull/95/files

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of YieldNest smart contract/s. To do so, the code was reviewed line by line
by our smart contract developers, who documented even minor issues as they were
discovered. In summary, our strategies consist largely of manual collaboration between
multiple team members at each stage of the review:

Due diligence in assessing the overall Thorough manual review of the
code quality of the codebase. codebase line by line.

Cross-comparison with other, similar
smart contract/s by industry leaders.

YIELDNEST SMART CONTRACTS REVIEW

I/} zokyo

6

Executive Summary

The Zokyo team has conducted a security audit of the provided codebase. The submitted
contracts for auditing are well-crafted and organized. Detailed findings from the audit
process are outlined in the 'Complete Analysis' section.

YIELDNEST SMART CONTRACTS REVIEW

I/} zokyo

7

STRUCTURE AND ORGANIZATION OF THE DOCUMENT

For the ease of navigation, the following sections are arranged from the most to the least

critical ones. Issues are tagged as “Resolved” or “Unresolved” or “Acknowledged” depending

on whether they have been fixed or addressed. Acknowledged means that the issue was
sent to the YieldNest team and the YieldNest team is aware of it, but they have chosen to
not solve it. The issues that are tagged as “Verified” contain unclear or suspicious
functionality that either needs explanation from the Client or remains disregarded by the
Client. Furthermore, the severity of each issue is written as assessed by the risk of
exploitation or other unexpected or otherwise unsafe behavior:

Critical . Low
The issue affects the contract in such The issue has minimal impact on the
a way that funds may be lost, contract’s ability to operate.
allocated incorrectly, or otherwise
result in a significant loss. Informational
. The issue has no impact on the
‘ High contract’s ability to operate.

The issue affects the ability of the
contract to compile or operate in a
significant way.

‘ Medium

The issue affects the ability of the
contract to operate in a way that
doesn'’t significantly hinder its
behavior.

YIELDNEST SMART CONTRACTS REVIEW

I/} zokyo

8

Possible Inflationary Attack In ynETH May Allow Attackers To Get An Unfair Amount of
Shares

The ynETH. sol contract relies on the execution layer receiver and the consensus layer
receivers to determine the amount of shares to distribute to the user in the form of ynETH
tokens. Malicious users could forcibly transfer a certain amount of Eth into the execution
layer receiver, trigger processRewards (which anybody can call) in the rewards distributor
then deposit 1 wei of Ether into ynETH to cause the next user to receive an unfair amount of
tokens. In addition to this, the initial user may be minted a disproportionate amount of ynETH
tokens as the first depositor will be minted at a rate of 1:1 indefinitely and subsequent users
are minted less (depending on the balance of incoming rewards in which case, significantly
less).

Recommendation:

It's recommended that deposits in the ynETH contract are bootstrapped similarly to the
ynLSD contract to make the bug considerably more expensive to trigger.

Deprecated ETH Transfer Method May Prevent Validators From Being Registered

The ynETH.withdrawETH () method is used by the stakingNodesManager contract in
order to withdraw Ether and register a new validator which uses

payable (*) .transfer (toAmount). The original transfer method uses a fixed stipend of
2,300 gas units which may not be sufficient for some contracts to process the transfer
resulting in a revert, preventing the registration of a validator.

Recommendation:

It's recommended that a low level .call () is used to transfer Ether between contracts and
EOAs.

YIELDNEST SMART CONTRACTS REVIEW

/i zokyo

10

COMPLETE ANALYSIS

FINDINGS SUMMARY

Title

Possible Inflationary Attack In ynETH May Allow
Attackers To Get An Unfair Amount of Shares

Deprecated ETH Transfer Method May Prevent

2
Validators From Being Registered

3 Lack Of Checks To Prevent Adding Duplicate Assets
in the Initialize() Functions

4 Unused Custom Errors

5 Multiple Read Operations Against Storage Variables

Risk

High

Medium

Medium

Informational

Informational

Status

Resolved

Resolved

Acknowledged

Resolved

Resolved

YIELDNEST SMART CONTRACTS REVIEW

I/} zokyo

9

Lack Of Checks To Prevent Adding Duplicate Assets in the Initialize() Functions

There exists no checks to prevent adding duplicate assets when attempting to initialize the
ynLSD contract. The impact of duplicate assets lies in the totalAssets () function which
determines the shares distributed to the users via the deposit () function. This may result
in a larger value than expected.

Recommendation:

It's recommended that the ynLsD contract checks for its corresponding EigenLayer Strategy
contract in order to prove existence when reinitializing or check if the asset exists in the
assets array although the latter could be quite gas intensive.

Client comment: The decision is to acknowledge and leave this as is. The initialization is
performed by the YieldNest DAO at launch time and presence of duplicates would be
assumed to be avoided. If the ynLSD contract has duplicate assets it's immediately obvious
at initialization time and is considered forfeit.

YIELDNEST SMART CONTRACTS REVIEW

/i zokyo

11

INFORMATIONAL-1

Unused Custom Errors

The following custom errors are not used throughout the codebase:
o StakingNode.sol, L52-L55
o StakingNodesManager.sol, L42, 45
o LSDStakingNode.sol, L35-L36

Recommendation:

It's recommended that these custom errors are removed.

INFORMATIONAL-2

Multiple Read Operations Against Storage Variables

The withdrawETH () function of the ynETH contract, the totalDepositedInPool variable
is read multiple times directly from storage. The SLOAD opcode (cold read) will cost 2,100
gas units and 100 units of gas every read after that (warm read) which can add up to be a
considerable amount.

Recommendation:

It's recommended that storage variables across the code base are first cached to memory
which leverages the MLOAD instruction and will only code a minimum of 3 gas units for each
read operation.

YIELDNEST SMART CONTRACTS REVIEW

/i zokyo

12

RewardDistributor.sol
RewardsReceiver.sol
StakingNode.sol

StakingNodesManager.sol
YieldNestOracle.sol
LSDStakingNode.sol

Reentrance Pass
Access Management Hierarchy Pass
Arithmetic Over/Under Flows Pass
Unexpected Ether Pass
Delegatecall Pass
Default Public Visibility Pass
Hidden Malicious Code Pass
Entropy Illusion (Lack of Randomness) Pass
External Contract Referencing Pass
Short Address/ Parameter Attack Pass
Unchecked CALL

Return Values Pass
Race Conditions / Front Running Pass
General Denial Of Service (DOS) E
Uninitialized Storage Pointers Pass
Floating Points and Precision Pass
Tx.Origin Authentication Pass
Signatures Replay Pass
Pool Asset Security (backdoors in the

underlying ERC-20) Pass

YIELDNEST SMART CONTRACTS REVIEW

I/} zokyo

13

We are grateful for the opportunity to work with the YieldNest team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the YieldNest team put in place a bug

bounty program to encourage further analysis of the smart contract by
third parties.

I/} zokyo

